LES BESOINS HYDRIQUES:

I. L'EAU DANS L'ORGANISME :

■ L'EAU CORPORELLE – FACTEURS DE VARIATION :

Age	9		lourrisson	♂ adulte	♀ ac	dulte P	Personne âgée	
% d'eau					6	0	45	
		37	0 kg	♀ 60	0 kg	Q 1	40 kg	
Tissus	% eau	Poids (kg)	Eau (kg)	Poids (kg)	Eau (kg)	Poids (kg)	Eau (kg)	
LEC	97	16	15,5	14	13,6	15	14,55	
Muscles + organes	75	35	26,25	25	18,75	25	18,75	
T de soutien (os)	30	10	3	9	2,7	11	3, 3	
T adipeux	10	9	0,9	12	1,2	89	8,9	
Total		70	45,65	60	36,3	140	45,8	
% du poids corporel		><	85		60	><	33	

■ LES COMPARTIMENTS HYDRIQUES DE L'ORGANISME :

■ ROLE DE L'EAU DANS L'ORGANISME :

Hydratation des tissus (volume)
→ Transport : principal milieu de transport de l'organisme (nutriments, gaz respiratoires, déchets métaboliques) → Solvant : la plupart des substances sont solubles dans l'eau (indispensable pour les ionisations, des réactions acides/bases,)
 →Réactif: elle intervient directement dans de nombreuses réactions biochimiques (hydrolyse, synthèse osidique) → Régulateur thermique (sudation) → Amortisseurs de chocs (liquide céphalo-rachidien) et de pression

II. LE BILAN HYDRIQUE:

■ LES ENTREES D'EAU:

L'eau exogène	→ L'eau de boisson (apport variable) = ± 1300 mL/jour				
	→ L'eau alimentaire = ± 1000 mL/jour				
L'eau endogène	La quantité d'eau produite lors des réactions métaboliques varie selon les molécules catabolisées : - 1g de G ctabolisé conduit à la production de 0.6 g d'eau - 1g de P ctabolisé conduit à la production de 0.4 g d'eau - 1g de L ctabolisé conduit à la production de 1.07 g d'eau Globalement, 35 kJ de la ration alimentaire conduit à la production de 1g d'eau.	2600 mL/jour			
	Application : apport endogène pour un homme et une femme adultes activité habituelle : $-\text{homme}: 11400\text{kJ} \Rightarrow \frac{11400}{35} = 325g\\ -\text{femme}: 9100\text{kJ} \Rightarrow \frac{9100}{35} = 260g$ En moyenne : 300 mL				

■ LES SORTIES EN EAU:

Cutanée	→ La perspiration cutanée insensible = ± 200 mL/jour				
	→ La sudation = ± 300 mL/jour	jour			
Pulmonaire	Expiration = ± 400 mL/jour				
Fécale	Réabsorption d'eau importante au niveau de l'intestin en particulier du côlon				
	± 200 mL/jours				
Urinaire	La diurèse représente une perte très variable des sorties d'eau : « variable d'ajustement » pour un bilan net égale à 0.				
	2600 – (200+400+500) = 1500 mL/jour				

III. REGULATION DE LA DIURESE:

Sensation de soif (besoin de boire) = besoin dipsique

Hormones	Lieu de synthèse	Stimuli déclenchant leur libération	Cible	Effets
ADH (Hormone Anti- Diurétique) ou vasopressine	Hypophyse	↓° LEC ↑° osmolarité, avec ↑° de la natrémie	Reins: tubes collecteurs	↑° de la réabsorption d'eau
ANF (Facteur Natriurétique)	Oreillettes cardiaques	↑° LEC ↑° de la pression artérielle	Reins: tubes collecteurs	↑° de la diurèse (élimination d'eau)

IV. LES BESOINS ET LES APPORTS CONSEILLES :

■ ESTIMATION DES BESOINS HYDRIQUES :

Age	Nourrisson	1 an	4 ans	+ de 5 ans	adolescents	Adultes
Besoins en eau mL/kgPC/jour	160	80	60	55	35 à 50	
mL / kJ ingéré	0,35				0,25	5

APPLICATION:

Evaluer le besoin hydrique pour un homme et une femme d'activité habituelle :

- homme : $11 400 \times 0.25 = 2850 \text{ mL}$ - femme : $9 100 \times 0.25 = 2 275 \text{ mL}$

CAS PARTICULIER:

→ En cas de fièvre : les besoins augmentent de 10% par degrés de température > 37°C

→ Ambiance surchauffée : augmenter les apports en eau

→ Problèmes de reins : besoins en boisson : 2L minimum

→ Femme enceinte: besoins hydriques de 3000 à 3500 mL/j

→ Sportifs, travailleurs de force : besoins de 3500 mL/j

Il faut boire beaucoup pendant l'effort afin de :

- compenser les pertes (sudation, expiration)

- réduire la fatigue musculaire

- maintenir la température corporelle

→ Les personnes âgées n'ont pas plus de besoins que nous, ni même moins (0,24 mL/kJ/j) mais :

- la production d'ADH diminue

- la sensation de soif diminue

Il faut donc varier et fractionner les apports.